
Robust Control of a Reduced Humanoid Robot Model using Genetic
Algorithms and Fractional Calculus
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Abstract— There is an open discussion between those who
defend mass distributed models for humanoid robots, and those
on favor of simple concentrated models. Even though each of
them have its advantages and disadvantages, little research have
been conducted analyzing the control performance due to the
mismatch between the model and the real robot, and how the
simplifications affect the controller’s output.

In this paper we address this problem by combining a
reduced model of the humanoid robot, which has an easier
mathematical formulation and implementation, with a frac-
tional order controller, which is robust to changes in the
model parameters. This controller is a generalization of the
well-known PID structure obtained from the application of
Fractional Calculus to control, as will be discussed in the paper.

With this strategy we cancel the main disadvantage of the
reduced model, which is the assumption that the robot has a
simple mass distribution, and benefit from the robustness of
the fractional order controller, which tolerates a less precise
model. We model and identify the humanoid robot as a triple
inverted pendulum and, using a gain scheduling strategy, we
compare the performance of a classical PID with a fractional
order controller, tuning the controller parameters with a genetic
algorithm.

Index Terms— Fractional Calculus, Humanoid Robot Model,
Fractional Order Control, Differential Evolution, Non-linear
Control.

I. INTRODUCTION

In recent years there have been a strong discussion be-
tween researchers on favor to use mass distributed models
to model a humanoid robot, where the mass and inertia of
every link is known, and those who prefer to use a simplified
or concentrated mass model, where all robot dynamics are
simplified and concentrated in the center of gravity [1].

Those who prefer the representation of a complete dy-
namic representation defends that it allows more complex
behavior, the model is more accurate and there is no need
of complex control methods. In [2] the authors perform a
whole-body motion hierarchically dividing the control in
tasks. Arbulu et al. [3] used Lie algebra to obtain the
humanoid whole-body dynamics and reduce the computation
time. In [4] humanoid motion is accomplish controlling the
momentum of a complete body model.

Many researchers make use of reduced dynamic models
to control humanoids, some examples are the 2D and 3D
linear inverted pendulum (LIPM) [5],[6], cart-table [4] or
the angular momentum pendulum model [7].
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A reduced model does not cover all dynamic behavior
and non linearities of the real model, however, they are
commonly used and many researchers have obtained good
experimental results. In [8] a humanoid robot is modeled as
a double inverted pendulum and a stabilizer is studied. [9]
models a humanoid as an inverted pendulum of five links and
a stand up task is performed. Other examples can be found in
[10]. In [11] a triple inverted pendulum is controlled using an
evolutionary approach. Another examples of triple pendulum
control use H∞ [12] or fuzzy methods [13].

On the other hand, nowadays, the better understanding of
the potential of fractional calculus and the increasing number
of studies related to the applications of fractional order
controllers in many areas of science and engineering have led
to the importance of studying aspects such as the analysis,
design, tuning and implementation of these controllers.

Fractional calculus (FC) is a generalization of the integra-
tion and differentiation to the non-integer (fractional) order
fundamental operator aDα

t , where a and t are the limits and
α (α ∈ R) is the order of the operation. Among many
different definitions, two commonly used for the general
fractional integro-differential operation are the Grünwald-
Letnikov (GL) definition and the Riemann-Liouville (RL)
definition [14]. The GL definition is

aDα
t f(t) = lim

h→0
h−α

[ t−a
h ]∑
j=0

(−1)j
(
α

j

)
f(t− jh), (1)

where [·] means the integer part, while the RL definition is

aDα
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

f(τ)

(t− τ)α−n+1
dτ, (2)

for (n − 1 < α < n) and where Γ(·) is the Euler’s gamma
function.

For convenience, Laplace domain notion is commonly
used to describe the fractional integro-differential opera-
tion. The Laplace transform of the RL fractional deriva-
tive/integral (2) under zero initial conditions for order α
(0 < α < 1) is given by

£{aD±αt f(t)} = s±αF (s). (3)

In theory, control systems can include both the fractional
order dynamic system to be controlled and the fractional
order controller. However, in control practice, more common
is to consider the fractional order controller. This is due to the
fact that the system model may have been already obtained
as an integer order model in the classical sense.



In this line, the objective of this work is to apply a
fractional order control (FOC) strategy for the control of
a humanoid robot modeled as a triple inverted pendulum,
introducing a fractional order controller to improve the
system performance and overtake the mismatches produced
between the simplified and real models of the robot.

To test the robustness of our controller, we have compared
a classical PID controller with a fractional controller when
the humanoid follows a trajectory of standing up from a
chair. We have overloaded the system adding 1 Kg. to every
pendulum link, with the objective of evaluating the robot
performance when there is a change in the mass of the model.
The controller gains has been optimized with differential
evolution.

The rest of the paper is organized as follows. Section
II presents the simplified model of the HOAP humanoid
robot as a triple inverted pendulum, together with its state
space representation. Section III gives a brief review on
fractional order controllers and their implementation. Section
IV introduces the differential evolution method used here
to tune the different controllers proposed. In Section V, the
simulation results are given and discussed, concluding in
Section VI with the main conclusions and future works.

II. REDUCED ROBOT MODEL

In a very simplified way, a humanoid robot can be dynam-
ically modeled as a triple inverted pendulum. As it can be
seen in Fig. 1(Left), we have modeled the HOAP humanoid
robot as a triple pendulum, where the ankle joint of the
robot corresponds to the first pendulum joint, the knee joint
corresponds to the second one, and the hip joint corresponds
to the third one (see Fig. 1(Right)).

The similarity is stated under the assumptions that the
pendulum masses are concentrated at the tip of every link
and the link masses are negligible. The control action that
allows every mass mi to move a position qi is the torque τi.

Since the task we wanted to simulate is a robot standing
up from a chair, we have chosen a triple pendulum to model
the humanoid. The reason why we decided this is because
there is a direct mapping between the pendulum joints and
the joints needed for the robot to stand up. It is a good trade
between selecting a simple inverted pendulum model and a
complete model.

A. Triple pendulum equations

To obtain the triple pendulum equations let us define the
position and velocity of every link.

x1 = l1 sin q1, ẋ1 = l1 cos q1q̇1 (4)

z1 = l1 cos q1, ż1 = −l1 sin q1q̇1 (5)

x2 = l1 sin q1 + l2 sin q2 (6)

ẋ2 = l1 cos q1q̇1 + l2 cos q2q̇2 (7)

z2 = l1 cos q1 + l2 cos q2 (8)

ż2 = −l1 sin q1q̇1 − l2 sin q2q̇2 (9)
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Fig. 1. Left: Reduced model of HOAP humanoid robot sited on a chair.
The proposed model is a two dimensional triple inverted pendulum with
massless links and the center of mass at the tip of the pendulum. Right:
Triple inverted pendulum with masses, lengths, torques and positions.

x3 = l1 sin q1 + l2 sin q2 + l3 sin q3 (10)

ẋ3 = l1 cos q1q̇1 + l2 cos q2q̇2 + l3 cos q3q̇3 (11)

z3 = l1 cos q1 + l2 cos q2 + l3 cos q3 (12)

ż3 = −l1 sin q1q̇1 − l2 sin q2q̇2 − l3 sin q3q̇3 (13)

Articulated torques can be derived using the lagrangian
equation:

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= τi (14)

where the Lagrangian is the difference between kinetic and
potential energy.

L = T − V (15)

V = m1gz1 +m2gz2 +m3gz3 (16)
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2
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2
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2
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2
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where v1, v2 and v3 are the speed of the centers of mass of
the inverted pendulum, v2i = ẋ2i + ż2i . Substituting (4,...,13)
into (16) and (17) and then into (15), we obtain the equation
of motion of the triple pendulum, whose compact form is
stated as follows.

τ = H(q)q̈ + C(q, q̇)q̇ + G(q) (18)

where H ∈ R3×3 is the inertia matrix, C ∈ R3×3 is the
matrix of centrifugal and coriolis forces and G ∈ R3×1 is
the gravity matrix. The components of every matrix can be
expressed as: τ1

τ2
τ3

 =

 h11 h12 h13
h21 h22 h23
h31 h32 h33

 q̈1
q̈2
q̈3

+

+

 0 c12 c13
c21 0 c23
c31 c32 0

 q̇21
q̇22
q̇23

+

 g1
g2
g3

 (19)

h11 = l1
2 (m1 +m2 +m3) (20)

h22 = l2
2 (m2 +m3) (21)

h33 = l3
2m3 (22)



h12 = h21 = (m2 +m3)l1l2cos(q1 − q2) (23)

h13 = h31 = m3l1l3cos(q1 − q3) (24)

h23 = h32 = m3l2l3cos(q2 − q3) (25)

c12 = −c21 = −(m2 +m3)l1l2sin(q2 − q1) (26)

c13 = −c31 = −m3l1l3sin(q3 − q1) (27)

c23 = −c32 = −m3l2l3sin(q3 − q2) (28)

g1 = −gl1 (m1 +m2 +m3) sin (q1) (29)

g2 = −gl2 (m2 +m3) sin (q2) (30)

g3 = −gl3m3 sin (q3) (31)

B. State space representation of the triple pendulum

The inverted triple pendulum can be expressed as a dy-
namical system in the standard form:

Ẋ = AX +BU, Y = CX (32)

where X is the state vector, U is the control vector and Y
is the output vector.

To obtain the representation of the triple pendulum system
let us define the following state variables: X1 = q1, X2 =
q̇1, X3 = q2, X4 = q̇2, X5 = q3, X6 = q̇3.

Taking this into account, and reordering Eq.(18), the
matrices A, B and C can be obtained knowing that:

Ẋ1 = X2, Ẋ3 = X4, Ẋ5 = X6 (33) Ẋ2

Ẋ4

Ẋ6

 = f̂(X1, X2, X3, X4, X5, X6) (34)

Where f̂ contains nonlinear terms of the state variables.
To avoid the nonlinear terms, we have linearized over Xi0

using a Taylor expansion:

˙̃
X = AX̃ +BŨ (35)

where

A =
∂f

∂X

∣∣∣
X = X0
U = U0

; B =
∂f

∂U

∣∣∣
X = X0
U = U0

(36)

and X̃i = Xi −Xi0.
Since the desired trajectory has a wide variation, we

have selected three regions of linearization, obtaining three
subsystems. We have divided the desired trajectory in three
regions and we have chosen the middle point of every region
as the linearization point. In Fig. 2 the selected linearization
positions are shown. The result is three linear systems that
are going to be controlled with standard and fractional order
PID controllers using the differential evolution approach, as
will be explained later.

  

Fig. 2. The three positions of the system linearization. Every position is
a point of linearization and defines a linear system.

III. FRACTIONAL ORDER CONTROLLERS

A. A brief review

The theoretical and practical interest of fractional order
operators is nowadays well established, and its applicability
to science and engineering can be considered as an emerging
new topic. Even if they can be thought of as somehow
ideal, they are, in fact, useful tools for both the description
of a more complex reality and the enlargement of the
practical applicability of the common integer order operators.
Among these fractional order operators and operations, the
fractional integro-differential operators (fractional calculus)
are specially interesting in automatic control and robotics,
among others.

Going a step further in automatic control, Oustaloup [15]
studied the fractional order algorithms for the control of
dynamic systems and demonstrated the superior performance
of the CRONE (Commande Robuste d’Ordre Non Entier)
method over the PID controller. Podlubny [16] proposed
a generalization of the PID controller, namely the PIλDµ

controller, involving an integrator of order λ and a differen-
tiator of order µ. He also demonstrated the better response
of this type of controller, in comparison with the classical
PID controller, when used for the control of fractional order
systems. A frequency domain approach by using fractional
order PID controllers has also been studied in [17].

Fractional calculus also extends to other kinds of control
strategies different from PID ones, but in the case study
presented in this paper we propose the use of the fractional
order PIλDµ controller as a robust alternative for the control
of a humanoid robot simplified model based on the triple
inverted pendulum. More details will be given later.

B. Implementation

Before introducing the differential evolution method used
for the tuning of the different controllers proposed in this
paper, some considerations on the implementation of the
fractional order PIλDµ controller have to be taken into
account. A very good review regarding this topic is given
in [17].

The generalized transfer function of this controller is given
by

c(s) = kp +
ki
sλ

+ kds
µ. (37)

In general, when fractional order controllers have to be
implemented or simulations have to be performed, fractional



transfer functions are usually replaced by integer transfer
functions with a behavior close enough to the one desired,
but much easier to handle. There are many different ways
of finding such approximations but unfortunately it is not
possible to say that one of them is the best, because even
though some of them are better than others in regard to cer-
tain characteristics, the relative merits of each approximation
depend on the differentiation order, on whether one is more
interested in an accurate frequency behavior or in accurate
time responses, on how large admissible transfer functions
may be, and other factors like these [17].

In this work a frequency identification method performed
by the Matlab function invfreqs [17] has been used. With
this method a rational transfer function is obtained whose
frequency response fits the frequency response of the original
irrational transfer function within a selected frequency range.
This method is chosen due to its accuracy in the frequency
range of interest, which can be adjusted by selecting the
number of poles/zeros of the rational transfer function.

IV. DIFFERENTIAL EVOLUTION

Differential Evolution (DE) is a stochastic search opti-
mization method based on genetic algorithms [18]. It is
widely used in SLAM [19], multiobjective optimization [20],
pattern recognition [21]

This algorithm selects a random initial population over a
bounded domain xmin and xmax, generating Np population
members. Similarly to another evolutionary algorithms, it
perturbs the population, generating new members that are
going to be evaluated in a fitness function.

The selection and combination of new points are randomly
chosen from three individuals. Two of the members, xr1 and
xr2, are subtracted and multiplied by a weight F , and then
added to another xr3 giving a trial solution:

u0 = xr3 + F (xr1 − xr2) (38)

This solution u0 is evaluated in the fitness function and
compared with the rest of the vector of the same index. This
process is repeated until a population of Np has competed
against the trial solution randomly generated. Once the last
vector has been evaluated, the best members are selected for
the next iteration.

The computation ends when a final condition has been
achieved. Usual conditions are time, number of iterations or
a specific value of the fitness function.

In this paper we have used differential evolution to opti-
mize the values of the PID controller gains kp, ki, kd ∈ R3×3

and the gains and orders of the fractional order controller
kp, ki, kdλ and µ.

V. RESULTS AND DISCUSSION

A. Identification of pendulum parameters

To obtain the triple inverted pendulum parameters a system
identification was performed. For this purpose we used DE
optimizer, computing a triple pendulum’s Zero Moment Point
(ZMP) trajectory and comparing it with the real ZMP mea-
surement of the robot feet FSR sensors (Fig. 3), minimizing

the quadratic difference. Our identification is based on the
work of [22]. The results are shown in the Table I.
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Fig. 3. ZMP trajectory of the triple inverted pendulum and ZMP of the
real robot measured with the feet sensors.

The multibody ZMP equation in the sagital plane is

ZMP =

∑n
i=1mixi(z̈i + g)−

∑n
i=1miẍizi +

∑n
i=1 Iiyαiy∑n

i=1mi(z̈i + g)
(39)

The reason why we used the ZMP to perform the identifi-
cation is because ZMP is a measurement of stability, and
we can obtain a real ZMP directly from robot sensors. This
is more intuitive and gives more information than simple
joint trajectories. Taking these parameters into account and

TABLE I
TRIPLE PENDULUM IDENTIFICATION PARAMETERS

Mass (Kg) Lenght (m)
Link 1 0.505 0.167
Link 2 0.500 0.260
Link 3 3.900 0.264

the three operating points previously stated (Fig. 2), we
obtained three linearized subsystems using equation (35).
Each subsystem was controlled using an standard and a
fractional order PID controller, whose gains kp, ki, kd ∈
R3×3 and fractional orders λ, µ, have been obtained using
differential evolution. To change between systems, we used
a gain scheduling strategy.

The desired trajectory has been manually defined using
three order splines and it simulates a stand up trajectory.
The trajectory has been divided into three regions of two
seconds, corresponding to the three subsystems each. In Fig.
4 the simulated trajectory is shown.

Furthermore, to estimate the controller robustness, we have
overloaded the pendulum masses, adding 1 Kg to each link
and comparing the new responses with those obtained from
the nominal system.



Fig. 4. Simulation of triple inverted pendulum trajectory.

B. Comparison between classical and fractional order con-
troller

All simulations have been performed in MATLAB, using
Runge-Kutta solver and a sampling time of 1 ms.

The differential evolution algorithm produces random val-
ues of the controller gains, whose are used to simulate the
system in Fig. 5. The fitness function to minimize is the
difference between the system output and the reference. The
best member of every iteration is mutated and evaluated
again until a final value of the fitness function is reached
or a total number of iteration is passed. In our case, the final
value is 1 and the maximum number of iterations is 50. This
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Fig. 5. Control system. The block PID is changed for the block PIDfr
when the fractional order control strategy is used.

is done for every subsystem with the standard PID gains and
with the fractional order PID gains and λ and µ orders.

To approximate the behavior of a fractional controller,
we have used the frequency identification method invfreqs
provided by MATLAB. The chosen crossover frequency has
been 0.001 rad/s and we approximated the behavior of the
fractional controller for 4 decades.

The approximation of the fractional controller is a ratio-
nal expression of order 8. This expression is evaluated in
MATLAB and substituted in the block PIλDµ of Fig. 5.

For the sake of space, we are just presenting the pa-
rameters of the fractional order PID controller for the first
region, similarly obtaining the corresponding controllers for
the other two regions, and so for the classical PID case.

kp1 =

 404.727 −305.224 −782.663
1887.738 −102.147 −6281.782
1097.379 −13.248 417.511



ki1 =

−13129.120 13074.195 −5581.229
−1185.499 −118.561 1321.581
−1971.739 −933.607 12007.290


kd1 =

10891.500 6320.620 1687.942
−3646.421 1252.162 7721.200
1025.524 −943.733 −1851.324


λ1 = 0.595 µ1 = −0.432

The results obtained for the three regions are presented in
Fig. 6, 7 and 8, respectively.
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Fig. 6. System response for joint 1 for the nominal (left) and overloaded
(right) subsystem. In blue is the desired trajectory, in green the trajectory
with the fractional order controller and in green the trajectory with the
standard PID. In dotted red the limits of the three linearization regions.
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Fig. 7. System response for joint 2 for the nominal (left) and overloaded
(right) subsystem. In blue is the desired trajectory, in green the trajectory
with the fractional order controller and in green the trajectory with the
standard PID. In dotted red the limits of the three linearization regions.

As can be seen, the fractional order controller keeps the
stability of the system in case a significant masses mismatch
appear in the model. This way, we can guarantee the ro-
bustness of the control system to uncertainties in the model,
compensating this way the effects of using for simplicity
a reduced model of the robot for control purposes. On the
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Fig. 8. System response for joint 3 for the nominal (left) and overloaded
(right) subsystem. In blue is the desired trajectory, in green the trajectory
with the fractional order controller and in green the trajectory with the
standard PID. In dotted red the limits of the three linearization regions.

contrary, the responses with the standard PID controller are
unstable for some of the joins when the system is overloaded.

VI. CONCLUSIONS

This paper addresses the problem of modeling and control-
ling a reduced model of a humanoid robot based on the triple
inverted pendulum. A control technique that uses differential
evolution and a fractional order PID controller is applied,
obtaining very good results.

The effect of mass mismatches between the real and
the simplified model of the humanoid is compensated to
a significant extent by the fractional order PID controller,
which ensure the robust response of the whole system during
the whole motion when a mass increase of 1 Kg is considered
in each tip.

After comparing the behavior of the humanoid when
performing a standing up movement using the standard PID
controller and the fractional order one, it is concluded that,
using differential evolution as gain optimizer, both con-
trollers track the reference satisfactorily for the nominal case.
However, when the robot is overloaded, only the fractional
order controller guarantee the stability of the system.

We are currently working on testing this control strategy
in the real humanoid.
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