
Modelling and simulation of the humanoid robot HOAP-3 in the
OpenHRP3 platform

C.A. Monje, P. Pierro, T. Ramos, M. González-Fierro, C. Balaguer.

Abstract— The aim of this work is to model and simulate
the humanoid robot HOAP-3 in the OpenHRP3 platform. Our
purpose is to create a virtual model of the robot so that different
motions and tasks can be tested in different environments. This
will be the first step before testing the motion patterns in the
real HOAP-3. We use the OpenHRP3 platform for the creation
and validation of the robot model and tasks. The procedure
followed to reach this goal is detailed in this paper. In order
to validate our experience, different walking motions are tested
and the simulation results are compared with the experimental
ones.

I. INTRODUCTION

The existence of computer simulation platforms is funda-
mental in robotics research, especially if it is with humanoid
robots, since it allows us to develop the controllers and the
necessary programming without compromising the complex
and expensive mechanical system. In general, the objectives
that the simulators allow us to approach are:
• To visualize three-dimensional work environment and

the model of the robot in motion.
• To provide a test center for the development and eval-

uation of controls and software of the robot.
• To serve as a graphical user interface, which can even

be interactive in real time with the robot.
A necessary requirement for really effective simulations

is that the mechanical behavior of the virtual robot answers
as closely as possible to the real robot, so the preparation
work for a good virtual reality simulation platform turns out
to be crucial. Thereby, the programming developed over the
simulator will be able to be inherited by real applications.

One of the first principles and overviews of dynamic
simulators was given in Baraff and Witkin [1]. The more ad-
vanced guidelines and the important problems that should be
considered in humanoid dynamic simulations are mentioned
in the General Human/Humanoid-Dynamics Simulator pro-
posed in Vukobratovic et al [2]. Although one can discuss the
proposed implementations, e.g., the contact model, the paper
provides some general guidance for the simulator design and
the effects that should be taken into account in the dynamics
simulations. Notably, they are a flexibility at the joints when
the transmission between the motor and the corresponding
joint is not completely rigid but features some elasticity (one
additional DOF) and a flexible (deformable) contact between
the robot foot and the ground, i.e., elastodynamic contact
[3][4]. One of the most widely used simulators, particularly
for mobile robots, is the Player/Stage Open Source frame-
work [5]. This consists of a Player robot device server and
a 2D Stage multiple robot simulator. The main objective

of the framework is research into multi-robot systems, with
experiments and control of large population of robots without
having to buy real hardware counterparts. The Gazebo [6]
platform, an add-on to the Player/Stage framework, is based
on OpenGL graphics, specifically on the GLUT toolkit, and
Open Dynamics Engine. However, it should generally work
in conjunction with Player software running on the robot, and
it is mostly applied to mobile robot control. Some simulators,
e.g., in Ponticelli and Armada [7], are developed purely in
Matlab using Simulink toolboxes, such as SimMechanics,
and visualizing systems, such as VRML Viewer toolbox.
This approach enables rapid controller design and testing, but
it lacks some important features such as surface modeling,
and consequently has no collision detection feature.

Existing robotics simulators include, among others, Honda
and Sony simulators (proprietary for ASIMO and the QRIO),
the Fujitsu HOAP simulator (Fujitsu sells HOAP with a basic
simulation software), RoboWorks (a commercial software
developed by Newtonium), SD/FAST (by Symbolic Dynam-
ics, which provides nonlinear equations of motion from a
description of an articulated system of rigid bodies), and
Webots (a commercial software by Cyberbotics). Even Mi-
crosoft has developed a product named Microsoft Robotics
Studio, which is primarily used for mobile robots.

It is important to mention the OpenHRP platform [8][9]
Open Architecture Humanoid Robotics Platform) as a sim-
ulator and motion control library for humanoid robots de-
veloped at NIAIST (National Institute of Advanced Indus-
trial Science and Technology (Japan)). This is a distributed
framework based on CORBA (Common Object Request
Broker Architecture), created with the idea of sharing a code
between real and virtual robots, and ultimately of developing
identical controllers for real and virtual robots. This is a free
solution that will be used in this work to model the humanoid
robot HOAP-3 and simulate walking patterns before the final
test in real time with the real robot.

The work presented here is divided into the following
sections. First, Section 2 describes the simulation platform
OpenHRP3, which is the version 3 of OpenHRP. Section 3
presents the humanoid robot HOAP-3 model in OpenHRP3.
Section 4 details the generation of stable motion patters for
HOAP-3 and gives the references for each joint movement. In
Section 5, the motion of HOAP-3 in OpenHRP3 is tested for
the joint references given previously. After that, the motion
of the real robot is measured and compared with that from
simulation. Finally, Section 6 presents the main conclusions
of this work and future lines to be followed.

II. OPENHRP3 PLATFORM

OpenHRP3 [10] (Open Architecture Humanoid Robotics
Platform, version 3) is a simulation platform for humanoid
robots and software development. It allows the users to in-
spect the original model of the robot and the control program
across a dynamic simulation. In addition, OpenHRP3 pro-
vides several calculation software components and libraries
that can be used to develop software related to robotics.

To use OpenHRP3 the following programs, libraries, and
programming languages are needed [11]: Microsoft Visual
Studio, BOOST, CLAPACK, and TVMET libraries, graphi-
cal environment OpenRT, Adaptive Communication Environ-
ment (ACE), ORB, Python, Java, and Jython. OpenHRP3 is
currently supported on Ubuntu Linux platforms 7 or later
and Windows XP and Vista (32bit/64bit). In our case we
use Windows XP 64bit.

This virtual humanoid robot platform consists of a simu-
lator of humanoid robots and motion control library for them
which can also be applied to a compatible humanoid robot
as it is. OpenHRP also has a view simulator of humanoid
robots on which humanoid robot vision can be studied. The
consistency between the simulator and the robot is enhanced
by introducing a new algorithm to simulate repulsive force
and torque between contacting objects. OpenHRP is expected
to initiate the exploration of humanoid robotics on an open
architecture software and hardware, thanks to the unification
of the controllers and the examined consistency between the
simulator and a real humanoid robot.

The configuration of OpenHRP is shown in Fig. 1.
OpenHRP can simulate the dynamics of structure-varying
kinematic chains, both open chains and closed ones such
as humanoid robots [12]. It can detect the collision be-
tween robots and their working environment (including other
robots) very fast and precisely, computing the forward dy-
namics of the objects. It can also simulate the fields of vision
of the robots, force/torque sensors, and gradient sensors ac-
cording to the simulated motions. The sensor simulations are
essential to develop the controllers of the robots. OpenHRP
is implemented as a distributed object system on CORBA
[13]. A user can implement a controller using an arbitrary
language on an arbitrary operating system if it has a CORBA
binding.

The dynamics simulator of OpenHRP consists of five
kinds of CORBA servers (see Fig. 1) and these servers can
be distributed on the Internet and executed in parallel. Each
server can be replaced with another implementation if it
has the same interface defined by IDL (Interface Definition
Language). Using the language independence feature of
CORBA, ModelParser and OnlineViewer are implemented
using Java and Java3D, other servers are implemented using
C++. The functions of each server are as follows.

• ModelParser. This server loads a VRML file describing
the geometrical models and dynamics parameters of
robots and their working environment, and provides
these data to other servers.

• CollisionChecker. The interference between two sets of

Fig. 1. OpenHRP3 functions.

triangles is inspected, and the position, normal vector,
and the depth of each intersecting point are found.
RAPID (Robotics Application Programming Interactive
Dialogue) is enhanced to this end.

• Dynamics. The forward dynamics of the robots are
computed.

• Controller. This server is the controller of a robot, which
is usually developed by the users of OpenHRP.

• OnlineViewer. The simulation results are visualized by
3D graphics and recorded.

Using the servers, the forward dynamics of the robots are
computed in the following procedure. The total control flow
is shown in Fig. 1.
• Setting up of the simulation environment. ModelParser

reads a VRML file via HTTP protocol. The kinematics
and dynamics parameters are sent to Dynamics and the
geometric model is to CollisionChecker.

• Execution of the dynamics simulation. Controller reads
the outputs of the simulated sensors while communicat-
ing with Dynamics. Controller and Dynamics execute
the computations. Note that these computations can
be run in parallel. The outputs of Controller are the
torques of the actuators, and those of Dynamics are
the updated states of the robot. While the forward
dynamics is computed, CollisionChecker is called to
find the position, normal vector, and the depth of each
intersecting point. After these computations, Controller
sends the control outputs to Dynamics.

• Visualization and recording. The current states of the
world are sent from Dynamics to OnlineViewer, which
visualizes the simulated world and records it.

A. OpenHRP3 simulation interface

The simulation interface of the OpenHRP3 platform is
shown in Fig. 2.

The interface of this simulator is basically divided into
three parts. The first part (Fig. 2, Part 1, left) shows the tree
structure of the different modules loaded for the simulation.
These modules can be the model of the robot, the model of
the environment, the collision (Collision Pair) and control
modules, and the graphical display package, among others.
A command window is available at the right side of Part 1
to introduce command lines directly.

The second part is directed to display the robot model
during the simulation (Fig. 2, Part 2). In this area there are
two toolbars, the vertical and the horizontal ones, which
allow us to modify aspects of the display of the robot
environment, take pictures, and record videos of tasks.

Fig. 2. OpenHRP3 interface.

The third part is placed at the right of the interface (Fig. 2,
Part 3). It displays the signals that represent the evolution of
the joint variables during the simulation (position, velocity,
acceleration) as well as the information of the different
sensors included along the mechanical structure of the robot
(force/torque sensors, etc).

III. HOAP-3 MODEL IN OPENHRP3

The miniature humanoid robot HOAP-3 [14] (Humanoid
for Open Architecture Platform) has been developed by
Fujitsu in collaboration with Fujitsu Automation Lab (Fig.
3).

The HOAP-3 robot has a height of 60 cm and an approx-
imate weight of 8 Kg. It has 28 degrees of freedom (DOF)
distributed as shown in Fig. 4.

For modeling in OpenHRP the VRML [15] file describing
the geometrical model and dynamics parameters of the
robot must be created. The VRML structure that relates the
different DOF of the robot is shown in Fig. 5. The main joint
of the model is the WAIST, and the upper (arms) and lower
(legs) bodies are defined from it, in this order.

The Humanoid node is the root node of the model. Along
with it, Joint and Segment nodes (joint and link, respectively)
are basic elements of VRML and define the type of each joint
(Joint) and its corresponding shape (Segment).

Once the VRML model of the robot is created according to
the geometrical and dynamic parameters provided by Fujitsu,
the file can be loaded as a module in the tree structure of
the simulator interface, as defined previously.

In order to reduce the computation cost and speed up the
test procedure, we have modeled a more basic shape of the
robot instead of modeling its real appearance, which would
imply a more complex VRML file to be computed.

Fig. 3. Humanoid robot HOAP-3.

Fig. 4. Distribution of DOF in HOAP-3.

IV. GENERATION OF STABLE MOTION PATTERNS FOR
HOAP-3

In order to generate stable walking patterns of the hu-
manoid, we have used the cart-table model [16]. This model
(Fig. 6) is based on the ZMP (Zero Moment Point) preview
control scheme that obtain the COG (Center of Gravity)
trajectory from a defined ZMP trajectory. The relationship
between the ZMP trajectory and the COG trajectory is
defined by the following equations:

px = x− ẍ

g
zc, (1)

Fig. 5. Joint structure in VRML model.

py = y − ÿ

g
zc, (2)

where, in the sagittal plane, px is the ZMP reference, x is the
COG trajectory, ẍ is the COG acceleration, zc is the COG
height, and g is the gravity. We are going to focus on the
calculations in the sagittal plane. For the frontal plane the
procedure is the same but using the y component of these
terms.

In the cart table model, the cart mass corresponds to the
center of mass of the robot. If the cart accelerates at a proper
rate, the table can be upright for a while. At this moment,
the moment around px is equal to zero, so the ZMP exists:

τZMP = mg(x− px) −mẍzc. (3)

In order to obtain the COG trajectory, we can define
the ZMP control as a servo problem. Using the optimal
preview servo controller technique [17], the COG trajectory
can be obtained from a ZMP reference. We define the time
derivative of acceleration of the COG as

ux =
d

dt
ẍ. (4)

Using ux as the input of (1), we can put the ZMP equations
in the form of a variable state problem:

d

dt

 x
ẋ
ẍ

 =

 0 1 0
0 0 1
0 0 0

 x
ẋ
ẍ

+

 0
0
1

ux, (5)

px =
(

1 0 zc/g
) x

ẋ
ẍ

 . (6)

Fig. 6. Cart table model in sagittal plane.

The trajectories of the COG are discretized as piecewise
cubic polynomials at intervals of constant time T, using the
notation:

x̂k =

 x(kT)
ẋ(kT)
ẍ(kT)

 , uk = ux(kT), pk = px(kT). (7)

Equation (5) and (6) can be transformed into

x̂k+1 =

 1 T T 2/2
0 1 T
0 0 1

 x̂k +

 T 3/6
T 2/2
ẍ

uk, (8)

pk =
(

1 0 zc/g
)
x̂k. (9)

The constraints of the COG are defined by:

pmin
k ≤ pk ≤ pmax

k , (10)

where the maximal and minimal value are defined by the
edge of the feet.

To design the optimal servo controller, the performance
index can be expressed as

J =

∞∑
i=k

{
Qee(i)

2 + ∆xT (i)Qx∆x(i) +R∆u2
}
, (11)

where e(i) = p(i) − pref (i) is the servo error, Qe,
R > 0, Qx are symmetric non-negative definite matrices,
∆x = x(k) − x(k − 1) is the incremental state vector, and
∆u = u(k) − u(k − 1) is the incremental input.

The optimal controller that minimizes the index in (11) is
given by

u(k) = −Gi

k∑
i=0

e(k) −Gxx̂(k) −
NL∑
j=1

Gp(j)pref (k + j),

(12)

0 2 4 6 8 10 12 14 16 18
80

85

90

95

100

105
REF RARM SHOULDER P

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

0 2 4 6 8 10 12 14 16 18
−11

−10.5

−10

−9.5

−9

−8.5
REF RARM SHOULDER R

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

0 2 4 6 8 10 12 14 16 18
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
REF RARM SHOULDER Y

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

0 2 4 6 8 10 12 14 16 18
−105

−100

−95

−90

−85

−80
REF LARM SHOULDER P

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

0 2 4 6 8 10 12 14 16 18
8.5

9

9.5

10

10.5

11
REF LARM SHOULDER R

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

0 2 4 6 8 10 12 14 16 18
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
REF LARM SHOULDER Y

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

Fig. 7. Trajectories for the 3 DOF of the right and left shoulders,
respectively.

0 2 4 6 8 10 12 14 16 18
25

30

35

40

45

50

55

60
REF RARM ELBOW

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

0 2 4 6 8 10 12 14 16 18
−60

−55

−50

−45

−40

−35

−30

−25
REF LARM ELBOW

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

Fig. 8. Trajectories for the 1 DOF of the right and left elbows, respectively.

where Gi, Gx and Gp are the controller gains and NL is
the preview step.

Once the COG trajectory is obtained, the trajectories of the
lower body joints are calculated applying inverse kinematics.
In our case, we have select a step distance of 8 cm, a COG
height of 32 cm, and a preview time of 0.75 sec. The robot
walks 12 stpdf forward. The resulting joints trajectories are
shown from Fig. 7 to Fig. 12, including joints references for
the shoulders and elbows of both arms to perform a more
natural walking.

V. SIMULATION AND EXPERIMENTAL RESULTS

Our purpose is to test the walking patterns obtained in
Section 4 in the real HOAP-3. Prior to this experimental
test, the OpenHRP3 simulation platform is used to check the
stability of the robot during this walking action in simulation.
The specifications of the computer used include CPU:Intel
Core Duo 2.4GHz, RAM Memory: 2GB, and OS:Windows
XP 64 bits. The simulation time in this case is 18 seconds.

0 2 4 6 8 10 12 14 16 18
1.99

1.992

1.994

1.996

1.998

2

2.002

2.004

2.006

2.008

2.01
REF WAIST P

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

Fig. 9. Trajectories for the 1 DOF of the waist.

0 2 4 6 8 10 12 14 16 18
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
REF RLEG HIP Y

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

0 2 4 6 8 10 12 14 16 18
−15

−10

−5

0

5

10

15

20
REF RLEG HIP R

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

0 2 4 6 8 10 12 14 16 18
−10

−5

0

5

10

15

20

25

30

35

40
REF RLEG HIP P

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

0 2 4 6 8 10 12 14 16 18
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
REF LLEG HIP Y

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

0 2 4 6 8 10 12 14 16 18
−15

−10

−5

0

5

10

15

20
REF LLEG HIP R

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

0 2 4 6 8 10 12 14 16 18
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10
REF LLEG HIP P

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

Fig. 10. Trajectories for the 3 DOF of the right and left hips, respectively.

The VRML file of HOAP-3 is loaded in the modules
tree of the simulator together with the CollisionChecker
and Controller modules defined by OpenHRP3. After the
simulation test, the stable sequence of motions shown in Fig.
13 is obtained.

Once the stability of the robot is guaranteed in simulation,
the joints trajectories are loaded in the real HOAP-3 platform
and the walking test in performed experimentally. Very
good results are obtained, as can bee seen from Fig. 14
to Fig. 19 comparing the experimental and simulation joint
angles measured by the robot encoders and simulator angular
position sensors, respectively.

According to the good results obtained, a more com-
plex and complete sequence of motions has been tested
in HOAP-3 following the same procedure explained here,
that is: first, we generate the joints references from the
application of the cart table concept to ensure the sta-
bility of the patterns; then, we test the sequence in the
OpenHRP3 simulation platform; finally, after the valida-
tion of the stability in simulation, the sequence of mo-
tions is tested in the real HOAP-3 platform. Following

0 2 4 6 8 10 12 14 16 18
30

35

40

45

50

55

60

65
REF RLEG KNEE

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

0 2 4 6 8 10 12 14 16 18
−65

−60

−55

−50

−45

−40

−35

−30
REF LLEG KNEE

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

Fig. 11. Trajectories for the 1 DOF of the right and left knees, respectively.

0 2 4 6 8 10 12 14 16 18
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0
REF RLEG ANKLE P

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

0 2 4 6 8 10 12 14 16 18
−20

−15

−10

−5

0

5

10

15
REF RLEG ANKLE R

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30

35

40

45

50
REF LLEG ANKLE P

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

0 2 4 6 8 10 12 14 16 18
−15

−10

−5

0

5

10

15

20
REF LLEG ANKLE R

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

Fig. 12. Trajectories for the 2 DOF of the right and left ankles, respectively.

this procedure, several dance steps have been performed by
HOAP-3, as can be seen in the following video showing
the robot dancing in real time in an exhibition during 3
minutes: http://www.youtube.com/watch?v=mu5psxG7bwA.
Some pictures taken from this performance are shown in
Fig. 20. As can be seen, the simulation in OpenHRP3 is run
and shown in a top window during the performance. The
simulation also includes the same environment as the real
one (forest area).

Another important approach we are currently working
on is the manipulation of objects using HOAP-3. For that
purpose, it is necessary to measure the torque applied to the
robot wrists. The HOAP-3 platform has two force sensors on-
board, one in each wrist. Our objective now is to introduce
these torque measurements in simulation and create an
environment where the robot can operate freely, interacting
with objects in a stable way. We have already taken some
steps towards this goal, as can be seen in the sequence shown
in Fig. 21. In this case, the robot raises his arms until the
hands touch the wall. The torques in each wrist are measured

Fig. 13. Sequence of motions for HOAP-3 during a step.

0 2 4 6 8 10 12 14 16 18
80

85

90

95

100

105

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

RARM SHOULDER P

HOAP

OpenHRP

Reference

0 2 4 6 8 10 12 14 16 18
−9.59

−9.585

−9.58

−9.575

−9.57

−9.565

−9.56

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

RARM SHOULDER R

HOAP

OpenHRP

Reference

0 2 4 6 8 10 12 14 16 18
−0.02

−0.018

−0.016

−0.014

−0.012

−0.01

−0.008

−0.006

−0.004

−0.002

0

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

RARM SHOULDER Y

HOAP

OpenHRP

Reference

0 2 4 6 8 10 12 14 16 18
−105

−100

−95

−90

−85

−80

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

LARM SHOULDER P

HOAP

OpenHRP

Reference

0 2 4 6 8 10 12 14 16 18
9.545

9.55

9.555

9.56

9.565

9.57

9.575

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

LARM SHOULDER R

HOAP

OpenHRP

Reference

0 2 4 6 8 10 12 14 16 18
−10

−5

0

5
x 10

−3

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

LARM SHOULDER Y

HOAP

OpenHRP

Reference

Fig. 14. Trajectories for the 3 DOF of the right and left shoulders, both
in OpenHRP3 and HOAP-3.

0 2 4 6 8 10 12 14 16 18
25

30

35

40

45

50

55

60

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

RARM ELBOW

HOAP

OpenHRP

Reference

0 2 4 6 8 10 12 14 16 18
−60

−55

−50

−45

−40

−35

−30

−25

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

LARM ELBOW

HOAP

OpenHRP

Reference

Fig. 15. Trajectories for the 1 DOF of the right and left elbows, both in
OpenHRP3 and HOAP-3.

0 2 4 6 8 10 12 14 16 18
1.96

1.965

1.97

1.975

1.98

1.985

1.99

1.995

2

2.005

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

WAIST P

HOAP

OpenHRP

Reference

Fig. 16. Trajectories for the 1 DOF of the waist, both in OpenHRP3 and
HOAP-3.

0 2 4 6 8 10 12 14 16 18
−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

RLEG HIP Y

HOAP

OpenHRP

Reference

0 2 4 6 8 10 12 14 16 18
−15

−10

−5

0

5

10

15

20

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

RLEG HIP R

HOAP

OpenHRP

Reference

0 2 4 6 8 10 12 14 16 18
−10

−5

0

5

10

15

20

25

30

35

40

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

RLEG HIP P

HOAP

OpenHRP

Reference

0 2 4 6 8 10 12 14 16 18
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

LLEG HIP Y

HOAP

OpenHRP

Reference

0 2 4 6 8 10 12 14 16 18
−15

−10

−5

0

5

10

15

20

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

LLEG HIP R

HOAP

OpenHRP

Reference

0 2 4 6 8 10 12 14 16 18
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

LLEG HIP P

HOAP

OpenHRP

Reference

Fig. 17. Trajectories for the 3 DOF of the right and left hips, both in
OpenHRP3 and HOAP-3.

0 2 4 6 8 10 12 14 16 18
30

35

40

45

50

55

60

65

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

RLEG KNEE

HOAP

OpenHRP

Reference

0 2 4 6 8 10 12 14 16 18
−65

−60

−55

−50

−45

−40

−35

−30

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

LLEG KNEE

HOAP

OpenHRP

Reference

Fig. 18. Trajectories for the 1 DOF of the right and left knees, both in
OpenHRP3 and HOAP-3.

by two torque sensors included in the model of HOAP-3 in
OpenHRP3, one in each wrist. The torque measurements for
the right and left wrist are the ones show in Fig. 22.

0 2 4 6 8 10 12 14 16 18
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

RLEG ANKLE P

HOAP

OpenHRP

Reference

0 2 4 6 8 10 12 14 16 18
−20

−15

−10

−5

0

5

10

15

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

RLEG ANKLE R

HOAP

OpenHRP

Reference

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30

35

40

45

50

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

LLEG ANKLE P

HOAP

OpenHRP

Reference

0 2 4 6 8 10 12 14 16 18
−15

−10

−5

0

5

10

15

20

TIME (sec)

P
O

S
IT

IO
N

 (
d

e
g

re
e

s
)

LLEG ANKLE R

HOAP

OpenHRP

Reference

Fig. 19. Trajectories for the 2 DOF of the right and left ankles, both in
OpenHRP3 and HOAP-3.

Fig. 20. HOAP-3 dancing in an exhibition during 3 minutes. The simulation
is run and shown in a top window during the performance.

For real tests, we have built a moon environment for
HOAP-3 to interact with objects, as can be seen in Fig. 23.
We are now working on the creation of this environment
in OpenHRP3 and using the sensorial integration of this
platform to program manipulation activities.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we have used the potential of the OpenHRP3
platform to create a virtual model of the humanoid robot
HOAP-3 and simulate different motions. The cart table
model has been used to obtain stable motion patterns for
the robot. These patterns have been tested in simulation
and the stability of HOAP-3 during the walking action has
been validated. After this validation, experimental tests have
been performed with the real robot with very good results,
comparing simulation and experimental data and showing
the efficient performance of the robot model in OpenHRP3.

Fig. 21. Sequence of motions for HOAP-3 touching a wall.

0 1 2 3 4 5
−0.5

0

0.5
RIGHT WRIST TORQUE [X Axis]

TIME (sec)

T
O

R
Q

U
E

 (
N

*m
)

0 1 2 3 4 5
−0.5

0

0.5
RIGHT WRIST TORQUE [Y Axis]

TIME (sec)

T
O

R
Q

U
E

 (
N

*m
)

0 1 2 3 4 5
−0.5

0

0.5
RIGHT WRIST TORQUE [Z Axis]

TIME (sec)

T
O

R
Q

U
E

 (
N

*m
)

0 1 2 3 4 5
−0.5

0

0.5
LEFT WRIST TORQUE [X Axis]

TIME (sec)

T
O

R
Q

U
E

 (
N

*m
)

0 1 2 3 4 5
−0.5

0

0.5
LEFT WRIST TORQUE [Y Axis]

TIME (sec)

T
O

R
Q

U
E

 (
N

*m
)

0 1 2 3 4 5
−0.5

0

0.5
LEFT WRIST TORQUE [Z Axis]

TIME (sec)

T
O

R
Q

U
E

 (
N

*m
)

Fig. 22. Torques of right (up) and left (down) wrists during the touching
motion.

Fig. 23. Real moon environment for HOAP-3 for interaction and manip-
ulation of objects.

Finally, a more complex and complete sequence of motions
has been successfully tested again in simulation and experi-
mentally, in which the robot dance during 3 minutes ensuring
the stability during the whole task.

New steps are also being taken towards the simulation of
manipulation tasks with HOAP-3. For this purpose, a wall
has been integrated in the simulation environment and the
torques in the robot wrists when they get in contact with the
wall are measured by torque sensors included in the model
of the robot in OpenHRP3.

Future works will be in the line of creating a virtual
environment where the robot can interact with other robots
or objects thanks to the sensorial integration available in
OpenHRP3.

VII. ACKNOWLEDGEMENTS

This work has been supported by the CYCIT Project
PI2004-00325 and the European Project Robot@CWE FP6-
2005-IST-5, both developed by the research team Robotic-
sLab at the University Carlos III of Madrid.

REFERENCES

[1] A. Witkin, “Physically based modeling: Principles and practice con-
strained dynamics,” in COMPUTER GRAPHICS. Citeseer, 1997.

[2] M. Vukobratovic, V. Potkonjak, and S. Tzafestas, “Human and hu-
manoid dynamics,” Journal of Intelligent and Robotic Systems, vol. 41,
no. 1, pp. 65–84, 2004.

[3] Y. Fujimoto, S. Obata, and A. Kawamura, “Robust biped walking with
active interaction control between foot and ground,” in Robotics and
Automation, 1998. Proceedings. 1998 IEEE International Conference
on, vol. 3. IEEE, 1998, pp. 2030–2035.

[4] T. Sugihara and Y. Nakamura, “Contact phase invariant control
for humanoid robot based on variable impedant inverted pendulum
model,” in Robotics and Automation, 2003. Proceedings. ICRA’03.
IEEE International Conference on, vol. 1. IEEE, 2003, pp. 51–56.

[5] B. Gerkey, R. Vaughan, and A. Howard, “The player/stage project:
Tools for multi-robot and distributed sensor systems,” in Proceedings
of the 11th international conference on advanced robotics. Citeseer,
2003, pp. 317–323.

[6] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” Intelligent Robots and Systems,
2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International Con-
ference on, vol. 3, pp. 2149–2154, September 2004.

[7] R. Ponticelli and M. Armada, “Vrsilo2: dynamic simulation system for
the biped robot silo2,” 9th International Conference on Climbing and
Walking Robots and the Supporting Technologies for Mobile Machines
(CLAWAR), 2006.

[8] F. Kanehiro, N. Miyata, and S. Kajita, “Virtual humanoid robot
platform to develop con- trollers of real humanoid robots without
porting,” IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 1093–1099, 2001.

[9] F. Kanehiro, H. Hirukawa, and S. Kajita, “Openhrp: Open
architecture humanoid robotics platform.” I. J. Robotic Res., vol. 23,
no. 2, pp. 155–165, 2004. [Online]. Available: http://dblp.uni-
trier.de/db/journals/ijrr/ijrr23.html

[10] “Openhrp3 official site.” [Online]. Available:
http://www.openrtp.jp/openhrp3/en/index.html

[11] K. Yamane and Y. Nakamura, “Dynamics computation of structure-
varying kinematic chains for motion synthesis of humanoid.”
in ICRA, 1999, pp. 714–721. [Online]. Available: http://dblp.uni-
trier.de/db/conf/icra/icra1999-1.html

[12] “Object management group.” [Online]. Available: http://www.omg.org/
[13] S. Gottschalk, M. Lin, and D. Manocha, “Obb-tree: A hierarchical

structure for rapid interference detection,” 23rd Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH), pp.
171–180, 1996.

[14] FUJITSU, HOAP-3 Instruction Manual.
[15] “The virtual reality model language.” [Online]. Available:

http://www.web3d.org/x3d/specifications/vrml/VRML1.0/index.html
[16] S. Kajita, F. Kanehiro, K. Keneko, K. Fujiwara, K. Harada, and

K. Yokoi, “Biped walking pattern generation by using preview control
of zero-moment point,” IEEE International Conference on Robotics &
Automation (ICRA), pp. 1620–1626, 2003.

[17] T. Katayama, T. Ohki, and T. Kato, “Design of an optimal controller
for a discrete time system subject to previewable demand,” Interna-
tional Journal of Control, vol. 41, no. 3, pp. 677–699, 1985.

